UNQORK

No-code application development platform
that supports organizations in finance, insurance,
healthcare, and government.

Role
Technical + UX Writer

Responsibilities
Documentation for the Platform Curriculum Team

Internal documentation of software capabilities,
features, and API functions.

UX and Technical documentation for the Help Center and
public Learning Paths.

Katherine Noble Writing Samples

UNQORK

Best Practices Example: APIs

API Best Practices

Introduction

You covered many APlrelated topics in previous courses including the basic functions of API calls. You also learned about predefined
Internal API calls at Ungork, such as how to Create and Update Submissions.

The possible uses for API calls extend much farther than creating or updating submissions in the Unqork Designer Platform.
Configurators use APl calls to process data in many ways. Remote executes keep data safe, keep proprietary processes hidden, and
improve speed and security.

Endless opportunities present themselves when an application includes remote executes. Follow these API best practices to learn how
to:

» Organize configurations.
» Standardize configurations so others can understand the purpose of the API call.

* Enable use of the Unqork Development Life Cycle Toolkit.

Katherine Noble Writing Samples

UNQORK

Best Practices Example: APIs

What You'll Learn

The following lesson teaches you how to:

e Create an APl module.

* Use the API Specification snippet.

e Test yvour APl call.

e Use the APl Docs Dashboard tool

e Use the Config Analysis Dashboard tool.

e Handle errors in API calls.

Creating Your APl Module

Create a new module to build out your APl Keep in mind these best practices as you build:

* Include a notation in the title indicating that this is an APl module. A common convention is APPLICATION NAME: MODULE NAME
(ap1).

» Add the API Field Tag to your module.

* Open the Settings for your module and switch on Server Side Execution Only. Save the updated settings.

Katherine Noble Writing Samples

UNQORK

Best Practices Example: APIs

Using the API Specification Snippet

The API Specification snippet simplifies building an APl in Unqork. It offers a standardized layout for modules that execute as APIs. Your APl module
stores in the API Docs Dashboard when you use the framework of this snippet. The Ungork Development Life Cycle Toolkit includes the API Docs
Dashboard, which lists the APl modules in your current environment and contains documentation for each APl module. This documentation
includes a description, the request parameters, and the response parameters.

To add the APl Specification snippet to your module:

1.

I

Click the Snippets button in left sidebar of Module Editor.

Enter API Specification in the search bar.

Drag and drop the API Specification snippet onto your canvas.

Remove the panellnfo, panelRequest, panelConfig, and panelResponse Panels from the panelApiTemplate Panel.
Delete the panelApiTemplate Panel.

Save your module.

The API Specification snippet looks like this in the Module Editor:

OAuUth? Passwond Grant we-»

a Modue tator — «

oy Ol g 4 e g
oAy T aae -
L bgppen v TATOEN Nte AN BB T WG T st TN DR T M o peret w g 30C SaraBaenpor s S Y o e (e AD T ergrare
> P W e T e

AGIICraiy STt e WA e e L mor e T WG o Tha modsu AL S e 93¢ Pu Wy M % e modse

Katherine Noble Writing Samples

UNQORK

Best Practices Example: APIs

Testing the API Call

It is imperative that you test your configurations when you build in the Unqork Designer Platform, including when you build APIs.

Follow these steps to test your API call:

1. Test your application in Express View to see how the end-user experiences the front end of your application.

2. Use the Server Side Execution tool to test your APL. The Server Side Execution tool is the best course of action to test an API since APIs run on the

server.

=) NOTE Learn more about the Server Side Execution tool: https://academy.ungorkcom/professionakintegration-

[—
== troubleshooting/753826.

3. Run your APl module as a remote execute, and reach your endpoint from wherever your application should call the APl module. This ensures
your API call works as expected.

Using the Life Cycle Toolkit

The UDLC Toolkit (Unqork Development Life Cycle Toolkit) helps you organize and visualize your projects. Use the APl Specification snippet in your AP
module for access to extra tools in the UDLC Toolkit. The success of these tools depends on following consistent best practices in your modules.

) NOTE The Professional Learning Path covers some of these tools. Learn more about these solutions tools here:

"=* https//academy.ungorkcom/solutions-tools.

Katherine Noble Writing Samples

UNQORK

Best Practices Example: APIs

Config Analysis Dashboard Tool

Also take note of the Config Analysis Dashboard tool, which analyzes best practices across a variety of metrics in the Ungork Designer Platform.
(missing or bad snippet)

This tool lets you:

* View a detailed list of the configuration analysis requests submitted in the current environment.
¢ Submit new configuration analysis requests.

* Upload a configuration analysis file.

* View existing config analysis data.

* Update violation statuses to see which violations are in review.

A Filters Panel displays when you use the Config Analysis Dashboard tool Notice the two parameters dedicated to API best practices when you filter
for tests:

* getApiSpecViolations identifies the modules that execute as APIs but violate APl specifications at Ungork.

* getApiParamViolations identifies request or response parameters in remote execute modules that violate API specifications at Ungork.

Katherine Noble Writing Samples

UNQORK

Best Practices Example: APIs

Handling Errors in an API Call

Mistakes happen in configurations despite best efforts! Practice configuring complex applications and troubleshooting errors to minimize mistakes
over time. Issues still occur, and these tips for troubleshooting API calls and APl best practices make error handling as easy as possible when they

occur.

Errors Handling for Plug-in Calls

Every Plug-in component requires error triggers to handle configuration issues. These triggers alert you when a specific Plug-in breaks. The trigger
sends you an error code associated with all APl errors. You determine the issue from the code and accompanying message, which helps you fix the

specific problem instead of blindly troubleshooting API callls.

Error Handling and Troubleshooting

More information about error handling can be found in the Expert Integration Troubleshooting (https://academy.ungork com/expert-integration-
troubleshooting) and Introduction to Error Handling (https://academy.ungork com/introduction-to-error-handling) courses through Ungork

Academy.

summary

This lesson brings together the APl best practices at Unqork. Review what you learned by answering these questions:

1. Which Trigger Type do you avoid when you configure Data and Event Processing components in your APl module?
2. How do you test an API?

3. Which tools keep your APIs organized?
Katherine Noble Writing Samples

UNQORK

Conceptual Example: Setting Up a SOAP API Call

Setting Up a SOAP Call

Introduction

In the previous lesson, you learned that SOAP APIs only work with XML (eXtensible Markup Language). They also require proper syntax to function
successfully. In this lesson, you'll learn the proper syntax for SOAP API calls and the proper syntax for XML

What You'll Learn

In this lesson, you'l learn:

o Syntax of a SOAP call.

e Syntax of XML

Syntax of a SOAP Call

SOAP calls must be encoded with XML To function as intended, a SOAP call requires an Envelope, Header, and Body.

1. Envelope defines the XML document as a SOAP caill.
2. Header displays information for the API call.

3. Body contains the bulk of the data for the call.
Katherine Noble Writing Samples

UNQORK

Conceptual Example: Setting Up SOAP API Calls

Syntax of XML

The earlier lesson on transforms outlines the proper syntax for an XML document. To reiterate the rules discussed in that lesson:

* Prologue is optional, but if it's used then it must be written first: <?xml version="1.0" encoding="UTF-8"?>
e Tags are the same as keys in a JSON structure.

* Values must be stored with an opening tag and a closing tag: <tag>value</tag>

* Values in an object or array must be properly nested: <object><tag>value</tag></object>

* XML Elements can have attributes, similar to HTML: <element attribute="value”></element>

* Specific Characters cannot be used and instead require entity reference:

Name of Character Symbol | XML Entity Reference

Less Than

Greater Than

Ampersand

Apostrophe

Quotation Mark

<

>

agt:

samp;

sapos;

dquot;

Katherine Noble Writing Samples

UNQORK

Conceptual Example: Setting Up SOAP API Calls

Here's an example of a SOAP call that uses XML

<?xml version="1.0"7>

<soap:Envelope
xmins:soap="http//www.w3.0rq/2003/05/scap-
envelope”s

<soap:Header>

{{Header Data Goes Here}}

</soap:Header>

<soap.Body>

{{Data Goes Here}}

</soap:Body>

<soap.Envelopes

Optional Prologue

Opening of Require Envelope

Opening of Required Header

Header Data

Closing Header

Opening of Required Body

Body Data

Closing Body

Closing Envelope

Katherine Noble Writing Samples

UNQORK

Conceptual Example: Setting Up SOAP API Calls

Setting Up Your XML Integration

To set up your integration, you'll begin the same way you set up any external service. Open up Services Administration from the Administration page.
Here's how to set up your XML integration:

. Enter your information in the Service title, Service name. and Service protocol + host ficlds.
2. Select Custom SOAP Header from the Type of Authentication drop-down. The SOAP Header text box displays.

3. Fillin your SCAP header in the SOAP Header text box if necessary.

Services Administration

Service title

Service mame (alpharumerke hyphen WARNING this i permanent)
Service protocod + host (must start with Wetp(s) 4™, e g Mip Umyhost com)

Type of authenticaton

Custom SOAP Header .

De met follow redrect (optional)

SOAP Header

Emable SOAP Digtadl Signature

Enable Mutual TLS

What you enter for your SOAP header depends on the call you make. By entering a SOAP header, you can keep the header in a single place. That means you can use
the same header for multiple calls. The downside to the Service Administration SOAP Header is that it can only hold static values. For dynamic or changing values,

you can enter your SOAP header in your transform bodly. Katherine Noble Writing Samples

UNQORK

Use Case Example: Building Out Modal Actions

Use Case: Building Out Modal Actions

Introduction

Now that you know about modal pop-ups in a ViewGrid, let's walk through an example. Before you set up the dashboard, you'l create a
Transform with Input Data to generate sample content. Then, you'll configure a panel, a button-click event, and a Data Workflow to
display the sample data in the modal pop-up.

What You'll Learn

In this use case, you'll build a modal pop-up to display additional information in a ViewGrid.

How This Use Case Works

In this use case, you set up a Transform with sample data to generate the content for your Dashboard submissions. Then, you
configure a panel to open as a modal and a button-click event to trigger the pop-up. Lastly, you map the outputs and set up a Data
Workflow to display the sample data in the modal pop-up. To complete this use case, you must be familiar with configuring Hidden
components, Initializer components, and Plug-in components. If needed, revisit the Introduction to Data and Events Processing and

Introduction to APls courses for a refresher.

Katherine Noble Writing Samples

UNQORK

Use Case Example: Building Out Modal Actions

Here are the basic steps of how this use case works:

L. ATransform with Input Data generates your sample data content.

© N o o s~ w b

Here's how the completed module looks in the Module Editor:

The ViewGrid pulls and displays data from your Data Table.

A panel includes text fields for the end-user to input additional data.

Your panel is set to display as a modal with the additional data.

A rule connects a button-click event on your ViewGrid to the modal pop-up.
The modal opens with the additional data when the button is clicked.

The outputs are mapped in the ViewGrid, which populates the text fields in the modal pop-up.

A Data Workflow connects the collected address data and displays the information in the modal pop-up.

Module Editor
o P ———

(A1#)

tuguentyy Leed ~
Tanl el
B i

1 -

Modal Action Use Case more +

B im0 csd

B g letDaes

WIC LT

A rdebatsonCick

panelDetalls

Katherine Noble Writing Samples

UNQORK

Use Case Example: Building Out Modal Actions

What You'll Need

To set up this use case, you'l need:

1Initializer component

¢ 1Plug-In component

* 2 Hidden components

¢ 1ViewGrid component

« 1Decisions component
* 1Panel component

» 5 Text Field components

e 1Data Workflow component
To set up your Data Workflow, you'll need:

e linput operator
» 3 Get operators

e 3 Output operators

Katherine Noble Writing Samples

UNQORK

Use Case Example: Building Out Modal Actions

Adding Sample Data

For this use case, youll use a Transform with Input Data to generate your sample content. If you have questions about setting up a Transform, revisit
the introductory lesson about Transforms.

For this example, your Transform requires the following data:

1

g "customers™: [

4 "firstName":"Arya",

5 "lastName" : "Stark",

6 "Age":15)

7 "concerns":"White Walkers and being too small",
8 "strengths":"Swords, sailing, and changing faces",
9 "address":

10 "street":"123 Castle Ln",

11 "city": "Winterfell”,

12 "state":"The North"

13 }

14 .

15

16 "firstName":"Hikaru",

17 "lastName" : "Sulu",

18 "age":29,

19 "concerns":"Terrorists, Thanos, Whielash",
20 "strengths":"Bravery and Navigation”,
21 "address":
22 "street”:"The Helm",
23 “city":"Main Deck”,
24 “state":"USS Enterprise”
25 }
26 .
27

28 "firstName":"Harry",

29 "lastName" : "Potter™,

30 "age":32,

31 "concerns":"Ghost and the Supernatural”,
32 "strengths":"Courage and Magic",

33 "address":)
34 "street":"The cupboard under the Stairs”,
35 “"city":"Little Whinging”,

36 “state":"Surrey”

37 }

38 R

39
40 "firstName":"Vivian",
41 "lastName" : "Banks",
42 "age":49,)
43 "concerns":"Children's safety",
44 "strengths":"Strong and Independent. ",
45 "address":
46 “"street":"251 N Bristol Ave",
47 “"city":"Los Angeles”,
48 "state":"California"
49

20

52 |} Katherine Noble Writing Samples
53

UNQORK

Use Case Example: Building Out Modal Actions

This serves as your sample submission data for the Dashboard. Now, you can manipulate how it looks visually in the Dashboard using a modal pop-
up and Data Workflow.

After setting up your Transform, map the output in the Outputs table of your Plug-In component like this:

m

customers jsonDatacustomers

Displaying the Data

Now, let's set up your ViewGrid to display submission data in the dashboard. Your Transform data is the Input to your ViewGrid. Enter customer in the
id column of the Inputs table.

Next, complete the Display table of your ViewGrid like this:

O N E

firstName First Name
lastName Last Name
age Age

Katherine Noble Writing Samples

UNQORK

Use Case Example: Building Out Modal Actions

Finally, create a button to display on your Dashboard. Enter Details in the Action field of the ViewGrid. This button triggers the modal pop-up.

Configuring the Panel Component

Now let's add a Panel component. The panel stores information to display in your modal pop-up. Here are some important settings to note in this
component

Display as a Modal ~ Yes (checked)

Dismiss Modal Event closeDetails
Open Modal Event openDetails

Then, configure the additional Text Field components that you want to display inside the panel. For this use case, drag and drop five Text Field
components onto your canvas. Label your text fields like this:

Property ID | Label Text

concerns Concerns

strengths Strengths

street Street
city City
state State

Katherine Noble Writing Samples

UNQORK

Use Case Example: Building Out Modal Actions

Configuring the Decision Component

Your ViewGrid button needs a rule connected to it so that the button-click event triggers the modal to open. Let's use a Decisions component to
create this rule. Set the Trigger Type to Watch. Then, configure the Inputs table like this:

buttonClick contains

Configure the Outputs table like this:

panelDetails trigger

Configure the Micro Decisions table like this:

Input Values | Output Values

buttonClick panelDetails_trigger

Details openDetails

Katherine Noble Writing Samples

UNQORK

Use Case Example: Building Out Modal Actions

Save and Preview

Save the Decision component, save the moedule, and preview the module. Your Express View looks like this:

vy

Marry

Vivian

Slan " l\/lhtuh ;)
tasy n (rmm.)
Fotter 2 D
Barws 40 (Dwtuns)

If you click the Details button, your modal opens and youll see this:

Katherine Noble Writing Samples

UNQORK

Use Case Example: Building Out Modal Actions

The text fields are empty because you need to set up the mapping for your outputs. Let's go back into your ViewGrid and update the mapping in
the Outputs table. The completed table looks like this:

o Juen

concerns <concerns

strengths strengths

address address

Displaying the Dynamic Data

To include addresses in your modal pop-up, use a Data Workflow to auto-populate the modal with your end-user's submitted information. Before
configuring your Data Workflow, make sure to add three Hidden components to store the output values.

This Data Workflow requires three different types of operators. An Input operator brings in your original data. Get operators allow you to grab single
data points from the large data set. Then, the Get operators pass that data through your Data Workflow. In this example, the Get operators pull the
values for Street, City, and State entered by the end-user. These values display in the modal pop-up.

Finally, an Output operator connects to each Get operator. These operators save the new data to your three hidden components.

Katherine Noble Writing Samples

UNQORK

Use Case Example: Building Out Modal Actions

And here’s how they look on your Data Workflow canvas:

+ Data Workflow

Convms Latel Tem ©
DufAoress

Q. Seaxch

oot @
Grep lopt B
e I
Sot Ovtppots B
Censele @
Cronte Table O

Conate Vo @

Frequently Used

1O

Gt
"iehy

PR

1!@

©

©

Progerty N
OwlAddiess

Qo o alp Page

Data Workfow Options

Add your Data Workflow to the Outputs table in the Decisions component. Set the Type to trigger. Then, the Micro Decisions table auto-populates
with the Data Workflow. In the column Output Values, enter GO.

Katherine Noble Writing Samples

UNQORK

Use Case Example: Building Out Modal Actions

Now, let's save and preview the module. Click the Details button again, and you see that all of the fields populate!

NOTE Modal pop-ups can create scope issues. This happens when the pop-up triggers more logic events like the data workflow in
;‘I your use case. In this example, a data workflow inside of the modal pop-up doesn't execute properly. The data workflow must be
~== outside the Panel component. A later course explores scope issues, but for now, let's keep it simple. If a logic component doesn't
work, try to move the logic component into or out of the Panel component.

Lab

You can view this completed use case here: https//trainingunqgorkio/#/form/61390ed9e22f7649204c016a/edit

Katherine Noble Writing Samples

UNQORK

Technical Copywriting Example: University Partnership Vertical

R

O

nd unqork

Unqork is going to college!

This past year, Ungork began an exciting collaboration with universities to bring no-code onto campus.

We went live in a classroom at Kennesaw State University and our course was met with enthusiasm
and success.

Kennesaw State is a member of the University System of Georgia and is the second-largest university in
the state. Five of their professors completed our Train the Trainer (TTT) bootcamp, and Unqork was

incorporated into a course curriculum for the first time. Students learned how to use the platform to design
solutions to real-life FinTech problems.

Now, we're looking forward to diversifying our work on campus. We're excited to team up with Elavon, a
new corporate partner and the payment division of the U.S. Bank. Our thriving collaboration at Kennesaw
State currently includes:

Katherine Noble Writing Samples

UNQORK

Technical Copywriting Example: University Partnership Vertical

e Digital Payments Security Course
o 41 students registered with Unqork out of the 76 students enrolled in the course.

o This course is connected with the far-reaching Georgia Fintech Academy, in collaboration
with the University System of Georgia.

e Experiential Learning in FinTech Course
o For this new course, Unqork co-partnered with Elavon, the payment division of the

U.S. Bank.

o Elavon creates use cases for students, solved using Unqork’s platform.

o The 42 students enrolled in the course will be registered with Unqork this semester.

o Seven Elavon employees, as well as two members of the U.S. Bank also registered
with Unqork in connection to this course.

o This course is also connected with Georgia Fintech Academy.

e Discussion of Expanded University Presence
o The College of Computing and Software Engineering is in the discovery phase of a

partnership with Unqork.
o The dean is interested in sending more professors through bootcamp.

Katherine Noble Writing Samples

UNQORK

Technical Copywriting Example: University Partnership Press Release

With Ungork at the center, Emory University is offering a senior seminar course about the disruptive
potential of no-code platforms. Students pursuing a Bachelor of Business Administration degree have the
opportunity to learn through experimentation, allowing them to conceptualize and then create
enterprise-grade software solutions. With an enrollment capacity of fifty students, we're confident that
this seminar is the start of a great relationship with Emory! Due to high demand and our expanding vision
for classroom connections, the Unqork Customer Success team is creating scalable, repeatable
processes to support this new university vertical as it evolves.

The reason for our enthusiasm around this project is clear: Unqork’s college connections are
exciting and mutually beneficial.

Democratizing enterprise-level application design through no-code allows a new generation of software
designers to focus on experimentation and problem-solving. Their attention remains on finding creative,
scalable solutions for clients, all without writing a single line of code.

Katherine Noble Writing Samples

UNQORK

Technical Copywriting Example: University Partnership Press Release

Corporate Connections

Each university maintains a
collection of corporate advocates
through their faculty, board,
and alumni relationships,

Our collaborations with these
corporations, which begin in the
classroom, expand the reach of
Unqgork exponentially over time.

Student Talent Pipeline

Alumni pre-rained on the Ungork
platform become strong applicants
when positions open at Ungork.

Alumni working for other
companies will understand the
unlimited potential of Ungork to
solve evolving issues at their

companies,

Exponential Benefits of

unqork

University Partnerships

6N

c—//

Cq
Training on the

Unqork Platform

Professors participate in our

Bootcamp or our Train the Trainer
program, creating a ripple effect as
they train others.

Students become acqainted with the

Solutions to Corporate

Use Cases
Corporations create relevant,
real-lfe use cases for students,
depicting issues encountered by
@ FinTech companies.

Applications created by students
aren't just prototypes. They have
the potential to pivot at minimum
cost

and risk into a full-production

Katherine Noble Writing Samples

